基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对目前钢水温度预定方法存在不足,在分析钢水温度预定原理的基础上,在邯钢邯宝炼钢厂建立了基于BP神经网络的精炼终点目标温度和转炉终点目标温度的动态预定模型。利用邯宝炼钢厂的历史生产数据对模型进行了训练和测试,并进行了现场应用试验。结果表明,预定模型对转炉和精炼终点目标温度进行了优化,应用预定模型后,LF开始温度命中率提高到75%,中间包温度命中率提高到96.7%。
推荐文章
基于EMD的BP神经网络海水温度时间序列预测研究
经验模态分解
BP神经网络
海水温度时间序列预测
非平稳性序列
基于LM-BP神经网络的Argo数据西北太平洋海水温度模型
海水温度
西北太平洋
LM-BP神经网络
Argo数据
基于BP神经网络的超声测压温度补偿模型
超声测压
BP神经网络
温度补偿
基于BP神经网络及模糊推理的温度预警模型研究
BP神经网络
模糊推理
冷链物流
温度预警
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的钢水温度预定模型
来源期刊 钢铁研究 学科 工学
关键词 BP神经网络 钢水温度预定 命中率
年,卷(期) 2012,(3) 所属期刊栏目 试验与研究
研究方向 页码范围 30-34
页数 分类号 TF758
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冯春松 4 6 1.0 2.0
2 何飞 北京科技大学冶金与生态工程学院 23 92 6.0 8.0
3 肖步庆 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (25)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(3)
  • 参考文献(1)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(2)
  • 二级参考文献(1)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
钢水温度预定
命中率
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
钢铁研究
双月刊
1001-1447
42-1218/TF
大16开
湖北省武汉青山区冶金大道28号武钢研究院信息研究所
38-42
1973
chi
出版文献量(篇)
1948
总下载数(次)
0
总被引数(次)
10464
论文1v1指导