作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The paper presents an approach for avoiding and minimizing the complementary pivots in a simplex based solution method for a quadratic programming problem. The linearization of the problem is slightly changed so that the simplex or interior point methods can solve with full speed. This is a big advantage as a complementary pivot algorithm will take roughly eight times as longer time to solve a quadratic program than the full speed simplex-method solving a linear problem of the same size. The strategy of the approach is in the assumption that the solution of the quadratic programming problem is near the feasible point closest to the stationary point assuming no constraints.
推荐文章
Effects of a proline solution cover on the geochemical and mineralogical characteristics of high-sul
Proline
Coal gangue
Pollution control
Heavy metal fraction
Mineralogical characteristics
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Quadratic Shepard插值法在TPC探测器电场计算中的应用
有限元分析
电场计算
细丝电极
插值方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Minimizing Complementary Pivots in a Simplex-Based Solution Method for a Quadratic Programming Problem
来源期刊 美国运筹学期刊(英文) 学科 数学
关键词 QUADRATIC PROGRAMMING CONVEX Karusha-Kuhn-Tucker SIMPLEX Method
年,卷(期) mgycxqkyw_2012,(3) 所属期刊栏目
研究方向 页码范围 308-312
页数 5页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
QUADRATIC
PROGRAMMING
CONVEX
Karusha-Kuhn-Tucker
SIMPLEX
Method
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国运筹学期刊(英文)
半月刊
2160-8830
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
329
总下载数(次)
0
论文1v1指导