基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This article considers the problem in obtaining the maximum likelihood prediction (point and interval) and Bayesian prediction (point and interval) for a future observation from mixture of two Rayleigh (MTR) distributions based on generalized order statistics (GOS). We consider one-sample and two-sample prediction schemes using the Markov chain Monte Carlo (MCMC) algorithm. The conjugate prior is used to carry out the Bayesian analysis. The results are specialized to upper record values. Numerical example is presented in the methods proposed in this paper.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
Oil geochemistry derived from the Qinjiatun–Qikeshu oilfields: insight from light hydrocarbons
Light hydrocarbons
Crude oil
Lishu Fault Depression
Geochemistry characteristic
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Prediction Based on Generalized Order Statistics from a Mixture of Rayleigh Distributions Using MCMC Algorithm
来源期刊 统计学期刊(英文) 学科 数学
关键词 MIXTURE DISTRIBUTIONS RAYLEIGH Distribution Generalized Order STATISTICS RECORD VALUES MCMC
年,卷(期) 2012,(3) 所属期刊栏目
研究方向 页码范围 356-367
页数 12页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MIXTURE
DISTRIBUTIONS
RAYLEIGH
Distribution
Generalized
Order
STATISTICS
RECORD
VALUES
MCMC
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导