基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对滚动轴承的故障特点,提出了一种将IMF能量与RBF神经网络相结合的方法用于故障诊断.该方法首先利用经验模态分解(EMD)方法,把振动信号分解为若干个IMF分量,再用重要的IMF分量求得IMF能量特征向量,最后将特征向量输入RBF神经网络进行故障模式分类.通过对滚动轴承的正常状态、内圈故障、滚动体故障和外圈故障信号的分析结果表明,该方法能够准确、有效地识别这些故障.
推荐文章
基于改进的RBF神经网络的滚动轴承故障诊断
RBF神经网络
减聚类算法
故障诊断
滚动轴承
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于概率神经网络的滚动轴承故障诊断
PNN网络
BP神经网络
故障诊断
滚动轴承
基于小波包和改进BP神经网络的滚动轴承故障诊断方法
小波包
BP神经网络
Levenberg?Marquardt
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 IMF能量和RBF神经网络相结合在滚动轴承故障诊断中的应用研究
来源期刊 机械 学科 工学
关键词 IMF能量 RBF神经网络 故障诊断
年,卷(期) 2012,(6) 所属期刊栏目 故障与诊断
研究方向 页码范围 63-66,70
页数 分类号 TH17
字数 3245字 语种 中文
DOI 10.3969/j.issn.1006-0316.2012.06.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张梅军 5 53 3.0 5.0
2 王闯 11 35 3.0 5.0
3 陈灏 2 27 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (139)
参考文献  (9)
节点文献
引证文献  (15)
同被引文献  (39)
二级引证文献  (34)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(9)
  • 参考文献(2)
  • 二级参考文献(7)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(7)
  • 参考文献(3)
  • 二级参考文献(4)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(3)
  • 引证文献(2)
  • 二级引证文献(1)
2014(4)
  • 引证文献(1)
  • 二级引证文献(3)
2015(5)
  • 引证文献(4)
  • 二级引证文献(1)
2016(10)
  • 引证文献(4)
  • 二级引证文献(6)
2017(7)
  • 引证文献(1)
  • 二级引证文献(6)
2018(7)
  • 引证文献(1)
  • 二级引证文献(6)
2019(10)
  • 引证文献(2)
  • 二级引证文献(8)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
IMF能量
RBF神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械
月刊
1006-0316
51-1131/TH
大16开
四川省成都市锦江工业园区墨香路48号
62-105
1962
chi
出版文献量(篇)
5898
总下载数(次)
11
论文1v1指导