原文服务方: 测井技术       
摘要:
为准确计算孔隙度、渗透率等储层物性参数,结合模拟退火和差分进化算法的主要优点,提出一种改进的模拟退火差分进化(SADE)算法,将复杂储层物性预测过程中神经网络权值的训练转化为无约束优化问题,并建立新目标函数,进而利用改进的SADE算法进行求解,并与传统方法计算结果进行比较.新目标函数使得神经网络权值的调整不受样本期望输出大小的影响,更适用于变化范围较大的样本数据训练;改进的SADE算法利用退火温度控制差分进化的选择过程和差分策略的选用,前期具有很好的多样性,后期有较好的收敛能力,克服了经典算法早熟的缺点,提高了全局搜索能力和鲁棒性.利用该算法对现场实际资料进行计算,取得了很好的效果.
推荐文章
基于MATLAB的BP神经网络在储层物性预测中的应用
MATLAB
BP神经网络
孔隙度
渗透率
预测
储层物性
利用神经网络预测储层孔隙度
孔隙度
神经网络
LM算法
BP算法
相似度-遗传神经网络在储层物性预测中的应用
地球物理测井
遗传算法
相似度
神经网络
储层物性
预测
利用BP神经网络预测储层参数
神经网络
储层参数
岩芯物性
测井解释
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进SADE算法的神经网络预测储层物性
来源期刊 测井技术 学科
关键词 测井评价 模拟退火 差分进化 神经网络 目标函数 储层物性预测
年,卷(期) 2012,(6) 所属期刊栏目 方法研究
研究方向 页码范围 585-589
页数 5页 分类号 TE122
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (69)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(7)
  • 参考文献(2)
  • 二级参考文献(5)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
测井评价
模拟退火
差分进化
神经网络
目标函数
储层物性预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测井技术
双月刊
1004-1338
61-1223/TE
大16开
1977-01-01
chi
出版文献量(篇)
3350
总下载数(次)
0
总被引数(次)
25925
论文1v1指导