基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The use of a crop model like STICS for appropriate management decision support requires a good knowledge of all the parameters of the model. Among them, the soil parameters are difficult to know at each point of interest and costly techniques may be used to measure them. It is therefore important to know which soil parameters need to be determined. It can be stated that those which affect significantly the output variable deserve an accurate determination while those which slightly affect the model output variable do not. This paper demonstrates how a global sensitivity analysis method based on variance decomposition can be applied on soil parameters in order to divide them in the two categories. The Extended FAST method applied to the crop model STICS and a set of 13 soil parameters first allows to calculate the part of variance explained by each soil parameter (giving global sensitivity indices of the soil parameters) and the coefficient of variation of the output variables (measuring the effect of the parameter uncertainty on each variable). These metrics are therefore used for deciding on the importance of the parameter value measurement. Different output variables (Leaf Area Index and chlorophyll content) are evaluated at different stages of interest while others (crop yield, grain protein content, soil mineral nitrogen) are evaluated at harvest. The analysis is applied on two different annual crops (wheat and sugar beet), two contrasted weather and two types of soil depth. When the uncertainty of the output generated by the soil parameters is large (coefficient of variation > 1/3), only the parameters having a significant global sensitivity indices (higher than 10%) are retained. The results show that the number of soil parameters which deserve an accurate determination can be significantly reduced by the use of this relevant method for appropriate management decision support.
推荐文章
Mercury speciation, bioavailability and risk assessment on soil–rice systems from a watershed impact
Mercury and methylmercury
Rice
Mercury speciation and bioavailability
Paddy soil
Risk assessment
Dynamics of soil organic carbon following land-use change: insights from stable C-isotope analysis i
C3 photosynthesis
C4 photosynthesis
Land-use change
Stable carbon isotopes
Black soil of Northeast China
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Global sensitivity analysis for choosing the main soil parameters of a crop model to be determined
来源期刊 农业科学(英文) 学科 医学
关键词 Global Sensitivity ANALYSIS UNCERTAINTY ANALYSIS SOIL Parameters CROP Model STICS Management DECISION Support Agro-Environmental VARIABLES
年,卷(期) 2012,(7) 所属期刊栏目
研究方向 页码范围 949-961
页数 13页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Global
Sensitivity
ANALYSIS
UNCERTAINTY
ANALYSIS
SOIL
Parameters
CROP
Model
STICS
Management
DECISION
Support
Agro-Environmental
VARIABLES
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
农业科学(英文)
月刊
2156-8553
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1151
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导