基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对变压器故障诊断中出现的多故障分类问题,为提高支持向量机的多故障分类的准确率,利用遗传算法(GA)对支持向量机的相关参数进行了优化.将利用遗传算法优化的支持向量机(GA-SVM)应用于变压器故障诊断中,并与利用粒子群算法优化的支持向量机(PSO-SVM)的识别结果进行比较.对比试验结果可以看出,GA-SVM算法能够更为有效地选择支持向量机的相关参数,在很大程度上提高了变压器多故障分类的准确性.
推荐文章
基于DGA支持向量机的变压器故障诊断
DGA
支持向量机
变压器
故障诊断
参数优化
SVM模型
基于支持向量机的变压器故障诊断
变压器
故障诊断
K均值聚类
支持向量机
基于粗糙集与支持向量机的变压器故障诊断
变压器
故障诊断
支持向量机
粗糙集
支持向量机在电力变压器故障诊断中的应用
变压器
故障诊断
溶解气体分析
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA优化支持向量机的变压器故障诊断
来源期刊 节能 学科 工学
关键词 支持向量机 遗传算法 参数优化 变压器 故障诊断
年,卷(期) 2012,(12) 所属期刊栏目 研究与探讨
研究方向 页码范围 24-27
页数 4页 分类号 TM41
字数 3287字 语种 中文
DOI 10.3969/j.issn.1004-7948.2012.12.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王涛 东北电力大学自动化工程学院 9 50 3.0 7.0
2 张春龙 东北电力大学自动化工程学院 4 10 2.0 3.0
3 吴楠 东北电力大学自动化工程学院 3 7 2.0 2.0
4 陈宇 东北电力大学自动化工程学院 4 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (15)
共引文献  (1852)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (2)
二级引证文献  (8)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
支持向量机
遗传算法
参数优化
变压器
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
节能
月刊
1004-7948
21-1115/TK
大16开
沈阳市东陵区朗月街2甲号1006室
8-150
1981
chi
出版文献量(篇)
5782
总下载数(次)
15
总被引数(次)
21152
论文1v1指导