原文服务方: 计算机测量与控制       
摘要:
由于传感器节点常散布于野外恶劣环境中而经常出现各类故障,导致网络瘫痪和严重损失,提出了一种基于粗糙集和蚁群优化神经网络的传感器节点故障诊断新方法;首先进行数据采集和预处理,然后利用粗糙集结果断点法对原始故障诊断样本离散化,使用可辨识矩阵实现属性约简,删除冗余信息,得到具有最小条件属性并能覆盖原始数据特征的学习样本集,最后,使用蚁群优化神经网络结构和各参数,并通过对网络进行训练来实现故障诊断;仿真实验表明,在达到同样的训练误差10-3,文中方法所需要的迭代次数仅为880次,而蚁群神经网络为1500次,证明了文中方法具有较高的诊断精度和效率.
推荐文章
基于粗糙集分解的传感器网络节点故障诊断方法
节点故障
粗糙集
土壤环境监测系统
基于Rough Set和禁忌神经网络的传感器节点故障诊断
传感器节点
粗糙集
禁忌算法
神经网络
故障诊断
粗糙集CMAC神经网络故障诊断策略
粗糙集
神经网络
故障诊断
变压器
基于粗糙集和神经网络的柴油机故障诊断
粗糙集
ROSETTA
小波包降噪
RBF人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 粗糙集和蚁群神经网络应用于传感器节点故障诊断研究
来源期刊 计算机测量与控制 学科
关键词 传感器节点 故障诊断 粗糙集 蚁群 神经网络
年,卷(期) 2012,(10) 所属期刊栏目 自动化测试技术
研究方向 页码范围 2628-2631
页数 分类号 TP319
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郑晓亮 安徽理工大学电气与信息工程学院 55 198 8.0 12.0
2 富众杰 4 12 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (95)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
传感器节点
故障诊断
粗糙集
蚁群
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导