基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Many problems in physics are inherently of multi-scale nature. The issues of MHD turbulence or magnetic reconnection, namely in the hot and sparse, almost collision-less astrophysical plasmas, can stand as clear examples. The Finite Element Method (FEM) with adaptive gridding appears to be the appropriate numerical implementation for handling the broad range of scales contained in such high Lundquist-number MHD problems. In spite the FEM is now routinely used in engineering practice in solid-state and fluid dynamics, its usage for MHD simulations has recently only begun and only few implementations exist so far. In this paper we present our MHD solver based on the Least-Square FEM (LSFEM) formulation. We describe the transformation of the MHD equations into form required for finding the LSFEM functional and some practical issues in implementation of the method. The algorithm was tested on selected problems of ideal (non-resistive) and resistive MHD. The tests show the usability of LSFEM for solving MHD equations.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 LSFEM Implementation of MHD Numerical Solver
来源期刊 应用数学(英文) 学科 数学
关键词 MAGNETOHYDRODYNAMICS (MHD) LEAST-SQUARES Finite Element Method Adaptive Mesh Refinement Magnetic RECONNECTION Solar ERUPTIONS MHD Turbulence
年,卷(期) 2012,(11) 所属期刊栏目
研究方向 页码范围 1842-1850
页数 9页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
MAGNETOHYDRODYNAMICS
(MHD)
LEAST-SQUARES
Finite
Element
Method
Adaptive
Mesh
Refinement
Magnetic
RECONNECTION
Solar
ERUPTIONS
MHD
Turbulence
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导