基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为解决矿井井底风流温度预测的问题,采用BP神经网络为模型,利用PSO算法优化网络权值和阈值,建立了一种新的井底风温预测模型,并用Matlab编程实现。通过对淮南某煤矿井底风温影响因素的分析得出地面入风口处风流温度、湿球温度,地面大气压力及井底湿球温度等因素的影响力较大。应用PSO-BP模型与BP模型对数据分别进行测试并分析,结果表明,该模型具有收敛速度快、预测精确度高,是求解井底风温非线性变化规律的最有效方法之一。
推荐文章
基于BP神经网络的矿井淋水井筒风温预测
神经网络
风温预测
淋水
井筒
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
基于PSO-BP神经网络的高炉煤气受入量的预测
高炉煤气
受入量预测
预测模型
PSO-BP神经网络
模型训练
模型检验
基于PSO-BP算法的目标威胁评估
BP神经网络
粒子群算法
威胁指数法
威胁估计
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-BP的矿井淋水井筒风温预测
来源期刊 煤矿安全 学科 工学
关键词 PSO BP神经网络 淋水井筒 风流温度 优化权值和阈值
年,卷(期) 2012,(11) 所属期刊栏目 分析·探讨
研究方向 页码范围 178-181
页数 分类号 TD727
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (35)
共引文献  (102)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (13)
二级引证文献  (1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(8)
  • 参考文献(0)
  • 二级参考文献(8)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
PSO
BP神经网络
淋水井筒
风流温度
优化权值和阈值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿安全
月刊
1003-496X
21-1232/TD
大16开
辽宁省抚顺市经济开发区滨河路11号
1970
chi
出版文献量(篇)
12289
总下载数(次)
22
总被引数(次)
57391
论文1v1指导