基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高城市用水量的预测精度,基于灰色GM(2,1)模型,采用参数ρ进行数乘变换,利用参数λ修正其背景值,引入微粒群算法(PSO)寻求参数λ、ρ的最优解,构建PSO -GM(2,1,λ,ρ)模型,对某市1990-2001年用水量进行预测,并与灰色神经网络(GNNM)算法预测结果进行对比.结果表明:引入PSO算法,利用其全局搜索、局部搜索相结合的搜索模式确定λ、ρ,可以提高灰色模型的预测精度;参数λ、ρ的随机性、灵活性加上PSO算法的搜索性、寻优高效性使PSO -GM(2,1,λ,ρ)模型比GNNM模型预测精度更高.
推荐文章
灰色神经网络在城市用水量预测中的应用
城市用水量
灰色神经网络
粒子群优化算法
PSO-GNNM(1,N)算法
城市日用水量的自回归模型(AR)预测方法
自回归模型
预测
日用水量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 灰色模型结合微粒群算法的城市用水量预测
来源期刊 人民黄河 学科 工学
关键词 城市用水量 灰色模型 微粒群算法
年,卷(期) 2012,(3) 所属期刊栏目 水资源·水环境
研究方向 页码范围 42-44
页数 分类号 TU991.31
字数 2564字 语种 中文
DOI 10.3969/j.issn.1000-1379.2012.03.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈帝伊 西北农林科技大学水利与建筑工程学院 29 297 10.0 16.0
2 柳烨 西北农林科技大学水利与建筑工程学院 7 72 4.0 7.0
3 王孔锋 西北农林科技大学水利与建筑工程学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (26)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (17)
二级引证文献  (7)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(7)
  • 参考文献(2)
  • 二级参考文献(5)
2006(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
城市用水量
灰色模型
微粒群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
人民黄河
月刊
1000-1379
41-1128/TV
大16开
郑州市金水路11号《人民黄河》杂志社
1949
chi
出版文献量(篇)
10081
总下载数(次)
8
总被引数(次)
43330
论文1v1指导