基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对高维、小样本的分类问题,提出2个重要的准则,用于估计RBF单元的初始宽度.采用主成分分析方法把训练样本集投影到特征脸空间,以减少维数,用Fisher线性判别式产生一组最具判别性的特征,使不同类间的训练数据尽可能地分开,而同一类的样本尽可能地靠近.实验结果证明,该算法在分类的错误率及学习的效率上都表现出较好的性能.
推荐文章
基于主元分析和BP神经网络的人脸识别研究
人脸识别
神经网络
主元分析
模式识别
基于NMF和LVQ神经网络的人脸识别
人脸识别
学习矢量量化
神经网络
分类
基于主元分析和压缩感知的人脸识别算法
人脸识别
压缩感知
稀疏表示
最小l0范数
基于改进的卷积神经网络的人脸识别算法
人脸识别
深度学习
卷积神经网络
Dropout技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络和主元分析的人脸识别算法
来源期刊 计算机工程 学科 工学
关键词 人脸检测 特征提取 人脸识别 聚类算法 神经网络 主元分析
年,卷(期) 2012,(19) 所属期刊栏目 人工智能及识别技术
研究方向 页码范围 175-178
页数 分类号 TP301.6
字数 3480字 语种 中文
DOI 10.3969/j.issn.1000-3428.2012.19.045
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙亚民 南京理工大学计算机科学与技术学院 117 1149 19.0 28.0
2 何正风 佛山科学技术学院基础教育系 8 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (10)
参考文献  (10)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(5)
  • 参考文献(2)
  • 二级参考文献(3)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸检测
特征提取
人脸识别
聚类算法
神经网络
主元分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程
月刊
1000-3428
31-1289/TP
大16开
上海市桂林路418号
4-310
1975
chi
出版文献量(篇)
31987
总下载数(次)
53
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导