基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
音频分类在多媒体应用中十分广泛,主要有时域分析和频域分析方法.文中提出了一种基于自适应间距比(APR)算法和支持向量机(SVM)算法的音频分类方法,先用APR算法区分语音与非语音;对于非语音,再通过SVM进行音频分类. APR算法是比较PR参数和阈值来区分语音和非语音,它和信噪比密切相关;而将非语音分成四组:音乐,汽车,会议,雨声,提取特征因子.实验结果表明:文中设计的分类器的精度达到93.75%以上,能很好地把各类型音频分开.
推荐文章
基于优化SVM模型的网络负面信息分类方法研究
优化SVM模型
网络负面信息
分类
基于快速SVM的大规模网络流量分类方法
支持向量机
大规模流量分类
比特压缩
权重SVM
分类器
分类准确率
基于SVM的一种新的分类器设计方法
小样本数据
SVM分类器
分类准确率
半监督学习
基于 SVM 方法的 SPOT-5影像植被分类1)
影像融合
Gram-Schmidt光谱锐化法
灰度共生矩阵
支持向量机
植被分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于APR-SVM的音频分类方法
来源期刊 计算机技术与发展 学科 工学
关键词 音频分类 特征提取 支持向量机 自适应间距比 信噪比
年,卷(期) 2012,(10) 所属期刊栏目
研究方向 页码范围 59-61
页数 分类号 TP315
字数 2602字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王晓峰 上海海事大学信息工程学院 71 454 12.0 17.0
2 蒋先涛 上海海事大学信息工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (15)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
音频分类
特征提取
支持向量机
自适应间距比
信噪比
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导