原文服务方: 计算机应用研究       
摘要:
针对模糊C-均值聚类算法过度依赖初始聚类中心的选取,从而易受孤立点和样本分布不均衡的影响而陷入局部最优状态的不足,提出一种基于自适应权重的模糊C-均值聚类算法.该算法采用高斯距离比例表示权重,在每一次迭代过程中,根据当前数据的聚类划分情况,动态计算每个样本对于类的权重,降低了算法对初始聚类中心的依赖,减弱了孤立点和样本分布不均衡的影响.实验结果表明,该算法是一种较优的聚类算法,具有更好的健壮性和聚类效果.
推荐文章
基于Canopy聚类的噪声自适应模糊C-均值算法
聚类算法
Canopy算法
模糊C-均值算法
局部和非局部空间信息
核空间局部自适应模糊C-均值聚类图像分割算法
自适应中值算法
模糊C-均值聚类
核函数
局部空间信息
基于改进QPSO的模糊C-均值聚类算法
模糊C-均值聚类
量子粒子群优化
聚类分析
量子门更新策略
基于混沌自适应引力搜索的模糊C均值聚类算法
自适应
混沌
引力搜索算法
模糊C均值聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于自适应权重的模糊C-均值聚类算法
来源期刊 计算机应用研究 学科
关键词 模糊C-均值聚类算法 自适应权重 高斯距离 隶属矩阵
年,卷(期) 2012,(8) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2849-2851
页数 分类号 TP301.6
字数 语种 中文
DOI 10.3969/j.issn.1001-3695.2012.08.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 许道云 贵州大学计算机科学与信息学院 125 460 12.0 16.0
2 秦永彬 贵州大学计算机科学与信息学院 63 213 8.0 10.0
3 任丽娜 贵州大学计算机科学与信息学院 2 18 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (28)
共引文献  (87)
参考文献  (8)
节点文献
引证文献  (17)
同被引文献  (21)
二级引证文献  (22)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(3)
  • 二级参考文献(3)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(5)
  • 引证文献(2)
  • 二级引证文献(3)
2015(4)
  • 引证文献(1)
  • 二级引证文献(3)
2016(10)
  • 引证文献(6)
  • 二级引证文献(4)
2017(4)
  • 引证文献(2)
  • 二级引证文献(2)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(5)
  • 引证文献(1)
  • 二级引证文献(4)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
模糊C-均值聚类算法
自适应权重
高斯距离
隶属矩阵
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导