原文服务方: 计算机测量与控制       
摘要:
目前通过油料常规质量指标和成分结构信息进行油料种类识别的方法因所需仪器设备多,分析测试过程复杂而缺乏实用性和推广价值;在分析油品理化性能指标与其类别间的相关关系及神经网络的特点后,以最简单方式提取尽可能多的特征参数为原则,通过表观特征参数的途径,设计了一种简单小巧的装置,可同时提取油料密度、粘度、吸光度、电导率和介电常数等参数的特征向量,提出了用RBF神经网络进行油料种类识别的方法,并给出了实现算法;实验结果及应用情况表明,该方法识别效果比较理想,为当前油料种类识别问题给出了一种新的解决途径.
推荐文章
基于神经网络的大型火情自动识别系统设计与研发
神经网络
火情自动识别系统
火情定位
信号放大
基于BP神经网络的实时水表自动识别系统的研究
数字水表
字符识别
BP神经网络
连通区域提取
字符分割
基于小波分析和RBF神经网络的电梯乘客识别系统
小波分析
RBF神经网络
电梯乘客识别系统
基于神经网络的在线调制自动识别
信号特征
调制识别
神经网络分类器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF神经网络的润滑油自动识别系统设计
来源期刊 计算机测量与控制 学科
关键词 油料种类识别 径向基函数神经网络(RBFNN) 特征参数提取 表观特征参效
年,卷(期) 2012,(2) 所属期刊栏目 算法、设计与应用
研究方向 页码范围 484-486,493
页数 分类号 TP274.3
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蓝集明 四川理工学院计算机学院 19 58 5.0 7.0
2 张海燕 四川理工学院理学院 13 51 4.0 7.0
3 熊刚 清华大学精密测试技术及仪器国家重点实验室 9 31 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (10)
共引文献  (10)
参考文献  (4)
节点文献
引证文献  (2)
同被引文献  (7)
二级引证文献  (8)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
油料种类识别
径向基函数神经网络(RBFNN)
特征参数提取
表观特征参效
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导