为了弥补传统PCA方法在人脸识别时易受光照、表情和姿态影响的缺陷,提出了一种基于独立特征提取的MPCA方法(Modular PCA Based on Independent Feature,IFMPCA).首先,选取人脸训练样本中具有相似光照、表情和姿态的图像进行分块,使各个子模块更接近高斯分布;然后,通过求出子模块图像的散布矩阵和最优投影矩阵得到最优独立特征矩阵;最后,利用最小距离分类器进行样本的分类.在Yale人脸数据库上的实验结果表明,IFMPCA算法在人脸正确识别率方面优于传统PCA算法.