基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K-Means算法是聚类方法中常用的一种划分方法.随着数据量的增加,K-Means算法的局限性日益突出.基于网格划分的思想,提出了一种基于网格的K-Means聚类算法,该算法使用了网格技术在一定程度上去除了孤立点和噪声数据,减少了原始K-Means算法特大的聚类分开的可能.实验表明,该算法能处理任意形状和大小的聚类,对孤立点和噪声数据也能很好地识别,并且在去除孤立点和噪声数据方面可以达到较好的精度.
推荐文章
一种基于密度的k-means聚类算法
聚类
k-means
信息熵
近邻密度
孤立点
一种分裂式的k-means聚类算法
聚类
数据预处理
初始聚类中心
一种基于SOM和K-means的文档聚类算法
自组织特征映射
K-means
聚类
组合方法
文档聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于网格的K-Means聚类算法
来源期刊 软件导刊 学科 工学
关键词 聚类算法 K-Means 网格
年,卷(期) 2012,(7) 所属期刊栏目 网络技术
研究方向 页码范围 120-121
页数 分类号 TP393
字数 1737字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张西芝 郑州升达经贸管理学院资讯系 14 13 2.0 3.0
2 朱小艳 河南大学软件学院 18 13 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (5)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
聚类算法
K-Means
网格
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
论文1v1指导