时间序列相似性查询中,DTW(Dynamic Time Warping)距离是支持时间弯曲的经典度量,约束弯曲窗口的DTW是DTW最常见的实用形式.分析了传统DTW最佳弯曲窗口学习方法存在的问题,并在此基础上引入时间距离的概念,提出了新的DTW最佳弯曲窗口学习方法.由于时间距离是DTW计算的附属产物,因此该方法可以在几乎不增加运算量的情况下提高DTW的分类精度.实验证明,采用了新的学习方法后,具有最佳弯曲窗口的DTW分类精度得到明显改善,分类精度优于ERP(Edit Distance with Real Penalty)和LCSS(Longest Common SubSequence),接近TWED(Time Warp Edit Distance)的水平.