基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对图像提取问题,最优阈值选取是否合理对图像分割效果至关重要.在处理不同种类图像区域时,粒子群算法(PSO)由于早熟现象难以准确计算最优分割阈值,因此导致图像分割准确率低.为了提高图像分割准确率且准确地提取出图像目标,提出一种基于混沌粒子群算法(CPSO)的图像阈值分割方法.受益于混沌运行的遍历性、对初始条件的敏感性等优点,CPSO很好地解决了PSO的粒子群过早聚集和陷入局部最优等难题,加快了全局搜索最优解的能力.采用具体图像对CPSO算法图像分割性能进行仿真实验,结果表明,相比于其它图像分割算法,CPSO不仅加快了运算速度,提高了图像分割效率,而且提高了图像分割准确率,非常适合于图像实时分割处理.
推荐文章
基于改进粒子群算法的二维阈值图像分割
图像分割
二维Otsu方法
粒子群算法
量子粒子群算法
基于粒子群优化算法的Kapur熵多阈值图像分割
图像分割
多阈值图像分割
粒子群优化算法
Kapur熵
粒子群优化的多阈值图像自分割算法
粒子群优化
自适应滤波
Otsu算法
多阈值
图像自分割
基于粒子群优化算法和模糊熵的多级阈值图像分割算法
图像分割
粒子群优化算法
模糊熵
香农熵
鲁棒性
目标函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进粒子群算法的图像阈值分割方法
来源期刊 计算机科学 学科 工学
关键词 图像分割 粒子群算法 阈值分割
年,卷(期) 2012,(9) 所属期刊栏目 图形图像
研究方向 页码范围 289-291,301
页数 分类号 TP391
字数 3027字 语种 中文
DOI 10.3969/j.issn.1002-137X.2012.09.066
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 龚声蓉 苏州大学计算机科学与技术学院 97 1079 17.0 27.0
2 章慧 淮阴工学院计算机工程学院 72 265 9.0 12.0
3 严云洋 淮阴工学院计算机工程学院 80 560 13.0 19.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (251)
参考文献  (11)
节点文献
引证文献  (11)
同被引文献  (15)
二级引证文献  (14)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(12)
  • 参考文献(1)
  • 二级参考文献(11)
2003(8)
  • 参考文献(1)
  • 二级参考文献(7)
2004(6)
  • 参考文献(1)
  • 二级参考文献(5)
2005(5)
  • 参考文献(2)
  • 二级参考文献(3)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(3)
  • 引证文献(3)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(3)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(6)
  • 引证文献(2)
  • 二级引证文献(4)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(5)
  • 引证文献(0)
  • 二级引证文献(5)
研究主题发展历程
节点文献
图像分割
粒子群算法
阈值分割
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
总被引数(次)
150664
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导