基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对遥感图像监督分类方法需要人工提取训练样本的缺陷,提出一种模糊K均值聚类(FCM)提取训练样本、支持向量机(SVM)进行分类的方法.首先用FCM进行初步分类得到隶属度矩阵并判断每个样本的类别号;然后根据隶属度矩阵提取每类样本中密集程度较高的样本作为训练样本;最后用SVM对样本进行训练、再次分类.该方法克服了SVM算法需要人工样本的缺点,改善了传统非监督分类算法的性能,UCI标准数据库Iris数据和遥感数据样本的实验结果证明了该方法的可行性.
推荐文章
基于K-means与SVM结合的遥感图像全自动分类方法
K-means
支持向量机
遥感图像分类
直推式遥感图像场景零样本分类算法
遥感场景分类
直推式零样本分类
Sammon嵌入
谱聚类
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 无人工样本的SVM遥感图像分类方法
来源期刊 电视技术 学科 工学
关键词 遥感图像分类 模糊C均值聚类 支持向量机 隶属度
年,卷(期) 2013,(23) 所属期刊栏目 数字视频
研究方向 页码范围 27-30,34
页数 5页 分类号 TN911.73
字数 4515字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈善学 重庆邮电大学移动通信安全研究所 84 380 9.0 13.0
2 李俊 重庆邮电大学移动通信安全研究所 5 12 2.0 3.0
3 冯银波 重庆邮电大学移动通信安全研究所 3 22 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (60)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (20)
二级引证文献  (1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(2)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(2)
  • 二级参考文献(1)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(2)
  • 二级引证文献(1)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遥感图像分类
模糊C均值聚类
支持向量机
隶属度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电视技术
月刊
1002-8692
11-2123/TN
大16开
北京市朝阳区酒仙桥北路乙7号(北京743信箱杂志社)
2-354
1977
chi
出版文献量(篇)
12294
总下载数(次)
21
总被引数(次)
42632
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导