Based on the equation of motion in nonequilibrium Green function formalism, the matching conditions for the distribution functions of Boltzmann equation at interfaces of metallic multilayers are investigated in the nonequlibrium transport procedure. We also explore the matching conditions when the current-induced spin accumulation is accounted for, the contribution of coulomb interaction due to accumulated electrons is included. In order to study the matching conditions in the position space, we generalize the tunneling Hamiltonian to the formalism in position space, the matching conditions in this case is then obtained, which is convenient for us to match the usual distribution function of Boltzmann equation.