This paper presents some installation and data analysis issues from an ongoing urban air temperature and humidity measurement campaign in Hangzhou and Ningbo, China. The location of the measurement sites, the positioning of the sensors and the harsh conditions in an urban environment can result in missing values and observations that are unrepresentative of the local urban microclimate. Missing data and erroneous values in micro-scale weather time series can produce bias in the data analysis, false correlations and wrong conclusions when deriving the specific local weather patterns. A methodology is presented for the identification of values that could be false and for determining whether these are “noise”. Seven statistical methods were evaluated in their performance for replacing missing and erroneous values in urban weather time series. The two methods that proposed replacement with the mean values from sensors in locations with a Sky View Factor similar to that of the target sensor and the sensors closest to the target’s location performed well for all Day-Night and Cold-Warm days scenarios. However, during night time in warm weather the replacement with the mean values for air temperature of the nearest locations outperformed all other methods. The results give some initial evidence of the distinctive urban microclimate development in time and space under different regional weather forcings.