基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了超长方体与KNN相结合的分类算法.在训练阶段,该算法为训练集中的每一个类别构造多个超长方体,区域分离每一类训练样本.在测试阶段,该算法首先检查测试样本是否被某一个超长方体包围,如是则其类别被识别出,否则用KNN方法确定其类别.实验采用四个真实数据集进行测试.实验结果表明基于超长方体与KNN的分类算法在四个数据集全部优于两个基于多球覆盖的分类方法,是一种有效的分类方法.
推荐文章
"长方体的认识"教学案例及反思
空间观念
多媒体课件
直观感悟
一种基于超长方体集的模糊模式识别算法
模糊模式识别
FCM
模糊最小-最大
超长方体集
基于PSO-ELM特征映射的KNN分类算法
K近邻分类算法
极端学习机
特征映射
粒子群算法
混合算法
线性不可分
KNN文本分类算法研究
文本分类
KNN
向量空间模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于超长方体与KNN的分类算法
来源期刊 青岛大学学报(自然科学版) 学科 工学
关键词 超长方体 K最近邻方法 分类方法 区域分离
年,卷(期) 2013,(4) 所属期刊栏目 物理、化学与信息工程
研究方向 页码范围 57-61
页数 5页 分类号 TP181
字数 3763字 语种 中文
DOI 10.3969/j.issn.1006-1037.2013.11.14
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张公敬 青岛大学信息工程学院 15 44 4.0 5.0
2 陈发 青岛大学信息工程学院 1 1 1.0 1.0
3 赵忠帅 青岛大学信息工程学院 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (109)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(2)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(6)
  • 参考文献(1)
  • 二级参考文献(5)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(8)
  • 参考文献(1)
  • 二级参考文献(7)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
超长方体
K最近邻方法
分类方法
区域分离
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
青岛大学学报(自然科学版)
季刊
1006-1037
37-1245/N
16开
青岛市宁夏路308号
1988
chi
出版文献量(篇)
1805
总下载数(次)
12
总被引数(次)
6176
论文1v1指导