基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The UK National Health Service (NHS) is faced with problems of managing patient discharge and preventing the problems that result from it such as frequent readmissions, delayed discharge, long waiting lists, bed blocking and other such consequences. The problem is exacerbated by the growth in size, complexity and the number of chronic diseases in the NHS. In addition, there is an increase in demand for high quality care, processes and planning. Effective Discharge Planning (DP) requires practitioners to have appropriate, patient personalised and updated knowledge in order to be able to make informed and holistic decisions about a patients’ discharge. This paper examines the role of Knowledge Management (KM) in both sharing knowledge and using tacit knowledge to create appropriate patient discharge pathways. The paper details the factors resulting in inadequate DP, and demonstrates the use of Internet of Things (IoT) and Machine2Machine (M2M) as candidate technologies and possible solutions which can help reduce the problem. The use of devices that a patient can take home and devices which are perused in the hospital generate information, which can serve useful when presented to the right person at the right time, thus harvesting knowledge. The knowledge when fed back can support practitioners in making holistic decisions with regards to a patients’ discharge.
推荐文章
Concentration-discharge patterns of weathering products from global rivers
Concentration-discharge
Rivers
Silicate weathering
Solutes
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
Geochemistry and sediment in the main stream of the Ca River basin, Vietnam: weathering process, sol
Ca River
Dissolved solids
Geochemistry
Carbonate weathering
Suspended solids
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Improving the Patient Discharge Planning Process through Knowledge Management by Using the Internet of Things
来源期刊 物联网(英文) 学科 医学
关键词 National Health Service (NHS) Knowledge Management (KM) DISCHARGE Planning (DP) Internet of THINGS (IoT) Machine2Machine (M2M)
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 16-26
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
National
Health
Service
(NHS)
Knowledge
Management
(KM)
DISCHARGE
Planning
(DP)
Internet
of
THINGS
(IoT)
Machine2Machine
(M2M)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
物联网(英文)
季刊
2161-6817
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
78
总下载数(次)
0
总被引数(次)
0
论文1v1指导