作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The analysis on the online finger gesture recognition using multi-channel sEMG signals was explored in this paper. Nine types of gestures were applied to be identified, involving six kinds of numerical finger gestures and three kinds of hand gestures. The time domain parameters were extracted to be the features. And then, the probabilistic neural network was utilized to classify the proposed gestures with the extracted features. The experimental results showed that most of gestures could acquire the acceptable classification performance and a few elaborate gestures were hard to acquire the effective identification.
推荐文章
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
Geochemical tracing and modeling of surface and deep water-rock interactions in elementary granitic
Weathering
Water pathways
U activity ratios
Sr isotope ratios
Anthropogenic gases (CFC,SF6)
CZO
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Online Finger Gesture Recognition Using Surface Electromyography Signals
来源期刊 信号与信息处理(英文) 学科 医学
关键词 FINGER GESTURE SEMG SIGNAL ONLINE RECOGNITION
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 101-105
页数 5页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FINGER
GESTURE
SEMG
SIGNAL
ONLINE
RECOGNITION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
总被引数(次)
0
论文1v1指导