基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
This paper proposes a Genetic Programming based algorithm that can be used to design optimal controllers. The proposed algorithm will be named a Multiple Basis Function Genetic Programming (MBFGP). Herein, the main ideas concerning the initial population, the tree structure, genetic operations, and other proposed non-genetic operations are discussed in details. An optimization algorithm called numeric constant mutation is embedded to strengthen the search for the optimal solutions. The results of solving the optimal control for linear as well as nonlinear systems show the feasibility and effectiveness of the proposed MBFGP as compared to the optimal solutions which are based on numerical methods. Furthermore, this algorithm enriches the set of suboptimal state feedback controllers to include controllers that have product time-state terms.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Enhanced Genetic Programming Algorithm for Optimal Controller Design
来源期刊 智能控制与自动化(英文) 学科 医学
关键词 GENETIC PROGRAMMING OPTIMAL CONTROL Nonlinear CONTROL System
年,卷(期) 2013,(1) 所属期刊栏目
研究方向 页码范围 94-101
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
GENETIC
PROGRAMMING
OPTIMAL
CONTROL
Nonlinear
CONTROL
System
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能控制与自动化(英文)
季刊
2153-0653
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
250
总下载数(次)
0
论文1v1指导