基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Principal component transformation is a standard technique for multi-dimensional data analysis. The purpose of the present article is to elucidate the procedure for interpreting PC images. The discussion focuses on logically explaining how the negative/positive PC eigenvectors (loadings) in combination with strong reflection/absorption spectral behavior at different pixels affect the DN values in the output PC images. It is an explanatory article so that fuller potential of the PCT applications can be realized.
推荐文章
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
A hydrochemical approach to estimate mountain front recharge in an aquifer system in Tamilnadu, Indi
Mountain-front recharge
Geostatistical tools
Hydrogeochemical facies
Ionic ratio
Anthropogenic processes
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Simplified Approach for Interpreting Principal Component Images
来源期刊 遥感技术进展(英文) 学科 数学
关键词 Principal Component IMAGES REMOTE SENSING EIGENVECTORS SPECTRAL Behavior
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 111-119
页数 9页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Principal
Component
IMAGES
REMOTE
SENSING
EIGENVECTORS
SPECTRAL
Behavior
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
遥感技术进展(英文)
季刊
2169-267X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
148
总下载数(次)
0
总被引数(次)
0
论文1v1指导