基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The generalized l1 greedy algorithm was recently introduced and used to reconstruct medical images in computerized tomography in the compressed sensing framework via total variation minimization. Experimental results showed that this algorithm is superior to the reweighted l1-minimization and l1 greedy algorithms in reconstructing these medical images. In this paper the effectiveness of the generalized l1 greedy algorithm in finding random sparse signals from underdetermined linear systems is investigated. A series of numerical experiments demonstrate that the generalized l1 greedy algorithm is superior to the reweighted l1-minimization and l1 greedy algorithms in the successful recovery of randomly generated Gaussian sparse signals from data generated by Gaussian random matrices. In particular, the generalized l1 greedy algorithm performs extraordinarily well in recovering random sparse signals with nonzero small entries. The stability of the generalized l1 greedy algorithm with respect to its parameters and the impact of noise on the recovery of Gaussian sparse signals are also studied.
推荐文章
LT码译码算法的研究
LT码
喷泉码
MPGE
译码算法
GT器械预备弯曲根管
GT手用锉
根管预备
牙髓腔
LT-B转基因烟草植株的建立
大肠杆菌热不稳定肠毒素B亚单位
转基因烟草
植物疫苗
根瘤农杆菌
基于LT码数据分发协议性能分析
LT码
分发协议
无线传感网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Numerical Studies of the Generalized <i>l</i><sub>1</sub>Greedy Algorithm for Sparse Signals
来源期刊 计算机断层扫描(英文) 学科 工学
关键词 Compressed Sensing Gaussian Sparse Signals l1-Minimization Reweighted l1-Minimization L1 GREEDY ALGORITHM Generalized L1 GREEDY ALGORITHM
年,卷(期) 2013,(4) 所属期刊栏目
研究方向 页码范围 132-139
页数 8页 分类号 TP39
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Compressed
Sensing
Gaussian
Sparse
Signals
l1-Minimization
Reweighted
l1-Minimization
L1
GREEDY
ALGORITHM
Generalized
L1
GREEDY
ALGORITHM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机断层扫描(英文)
季刊
2169-2475
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
58
总下载数(次)
0
总被引数(次)
0
论文1v1指导