基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究了一类各向异性Ginzburg-Landau型泛函,给出了极小元的梯度估计,以及当ε→0+时极小元渐近性态.
推荐文章
Landau-Lifschitz方程的Marchenko形式
Landau-Lifschitz方程
Jost解
Marchenko形式
完全各向同性Landau-Lifschitz方程二孤子解的计算
Landau-Lifschitz方程
规范变换
孤子解
Landau-Lifschitz铁磁方程的Hamilton理论和规范变换
规范变换
Landau-Lifschitz方程
守恒量
Hamilton理论
Landau-Lifschitz方程的反散射变换微扰理论
Jost解
反散射变换
微扰理论
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Landau-Lifschitz型能量的梯度估计
来源期刊 南京师大学报(自然科学版) 学科 数学
关键词 各向异性 极小元 梯度估计 调和映射
年,卷(期) 2013,(4) 所属期刊栏目 数学
研究方向 页码范围 36-40
页数 5页 分类号 O175.2
字数 3178字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王贝 江苏第二师范学院数学与信息技术学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (2)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
各向异性
极小元
梯度估计
调和映射
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京师大学报(自然科学版)
季刊
1001-4616
32-1239/N
大16开
南京市宁海路122号南京师范大学
1955
chi
出版文献量(篇)
2319
总下载数(次)
4
总被引数(次)
17979
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导