基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Remote sensing and crop growth models have enhanced our ability to understand soil water balance in irrigated agriculture. However, limited efforts have been made to adopt data assimilation methodologies in these linked models that use stochastic parameter estimation with genetic algorithm (GA) to improve irrigation scheduling. In this study, an innovative irrigation scheduling technique, based on soil moisture and crop water productivity, was evaluated with data from Sirsa Irrigation Circle of Haryana State, India. This was done by integrating SEBAL (Surface Energy Balance Algorithm for Land)-based evapotranspiration (ET) rates with the SWAP (Soil-Water-Atmosphere-Plant), a process-based crop growth model, using a GA. Remotely sensed ET and ground measurements from an experiment field were combined to estimate SWAP model parameters such as sowing and harvesting dates, irrigation scheduling, and groundwater levels to estimate soil moisture. Modeling results showed that estimated sowing, harvesting, and irrigation application dates were within ±10 days of observations and produced good estimates of ET and soil moisture fluxes. The SWAP-GA model driven by the remotely sensed ET moderately improved surface soil moisture estimates suggesting that it has the potential to serve as an operational tool for irrigation scheduling purposes.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Irrigation Scheduling Using Remote Sensing Data Assimilation Approach
来源期刊 遥感技术进展(英文) 学科 医学
关键词 Artificial Neural Network Genetic ALGORITHMS SEBAL REMOTE Sensing GROUNDWATER CROP Growth Modeling
年,卷(期) 2013,(3) 所属期刊栏目
研究方向 页码范围 258-268
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Artificial
Neural
Network
Genetic
ALGORITHMS
SEBAL
REMOTE
Sensing
GROUNDWATER
CROP
Growth
Modeling
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
遥感技术进展(英文)
季刊
2169-267X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
148
总下载数(次)
0
总被引数(次)
0
论文1v1指导