基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Hyper-temporal satellite imagery provides timely up to date and relatively accurate information for the management of crops. Nonetheless models which use high time series satellite data for sugarcane yield estimation remain scant. This study determined the best optimum time for predicting sugarcane yield using the normalized difference vegetation index (NDVI) derived from SPOT-VEGETATION images. The study used actual yield data obtained from the mill and related it to NDVI of several two-month periods of integration spread along the sugarcane growing cycle. Findings were in agreement with results of previous studies which indicated that the best acquisition period of satellite images for the assessment of sugarcane yield is about 2 months preceding the beginning of harvest. Overall, of the five years tested to determine the relationship between actual yield and integrated NDVI, three years showed a significant positive relationship with a highest r2 value of 85%. The study however warrants further investigation to improve and develop accurate operational sugarcane yield estimation models at the local level given that other years had weak results. Such hybrid models may combine different vegetation indexes with agro-meteorological models which take into account broader crop’s physiological, growth demands, and soil management which are equally important when predicting yield.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Determining the Best Optimum Time for Predicting Sugarcane Yield Using Hyper-Temporal Satellite Imagery
来源期刊 遥感技术进展(英文) 学科 医学
关键词 SUGARCANE NDVI YIELDS Spot VEGETATION
年,卷(期) ygjsjzyw_2013,(3) 所属期刊栏目
研究方向 页码范围 269-275
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SUGARCANE
NDVI
YIELDS
Spot
VEGETATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
遥感技术进展(英文)
季刊
2169-267X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
148
总下载数(次)
0
论文1v1指导