A faster numerical method based on FDTD for the four energy level atomic system is present here. The initial conditions for the electrons of each level are achieving while the fields are in steady state. Polarization equation, rate equations of electronic population and Maxwell’s equations were used to describe the coupling between the atoms and electromagnetic wave. Numerical simulations, based on a finite-difference time-domain (FDTD) method, were utilized to obtain the population inversion and lasing threshold. The validity of the model and its theory is confirmed. The time, which we can observe the lasing phenomenon, is much shorter in our new model. Our model can be put into using in large scale simulations in mutiphysics to reduce the total simulated time.