基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
When the observed price process is the true underlying price process plus microstructure noise, it is known that realized volatility (RV) estimates will be overwhelmed by the noise when the sampling frequency approaches infinity. Therefore, it may be optimal to sample less frequently, and averaging the less frequently sampled subsamples can improve estimation for quadratic variation. In this paper, we extend this idea to forecasting daily realized volatility. While subsample averaging has been proposed and used in estimating RV, this paper is the first that uses subsample averaging for forecasting RV. The subsample averaging method we examine incorporates the high frequency data in different levels of systematic sampling. It first pools the high frequency data into several subsamples, then generates forecasts from each subsample, and then combines these forecasts. We find that in daily S&P 500 return realized volatility forecasts, subsample averaging generates better forecasts than those using only one subsample.
推荐文章
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Forecasting Realized Volatility Using Subsample Averaging
来源期刊 统计学期刊(英文) 学科 医学
关键词 Subsample AVERAGING FORECAST Combination HIGH-FREQUENCY Data Realized VOLATILITY ARFIMA MODEL HAR MODEL
年,卷(期) 2013,(5) 所属期刊栏目
研究方向 页码范围 379-383
页数 5页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Subsample
AVERAGING
FORECAST
Combination
HIGH-FREQUENCY
Data
Realized
VOLATILITY
ARFIMA
MODEL
HAR
MODEL
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导