基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Experiments performed with the aim to explain pattern formation in plasma devices offer, as I will show in this survey, a new insight into the mechanism by which locally matter transits spontaneously from a disordered state into an ordered one. The essential news revealed by these experiments is the identification of a population of electrons that, driven at a critical distance from thermal equilibrium, is able to act as the organizer of the emergence and the survival of a complexity starting from chaos, i.e., from electric sparks the appearance of which is controlled by deterministic chaos. Supplied at a constant rate with thermal energy extracted by electrons from plasma, the complexity survives in a dynamical state performing operations in agreement with a code directly related to electrons thermal energy distribution function. Acting as a constituent of the matter, the population of electrons intrinsically controls the emergence and the survival of the complexity. Performing operations directly related to electron’s thermal energy distribution function, the complexity evolves stepwise in more advanced self-organized dynamical states, when this function is changed by an additional injection of energy. A set of nonlinear phenomena, not explainable by classical processes is involved in the mechanism by which the complexity emerges, survives and evolves. Thus, phenomena like Bose-Einstein condensation, macroscopic quantum coherence, direct and alternate Josephson effects, electron tunneling, negative differential impedance and others, potentially explain the emergence, functionality and vitality, i.e., the dynamical state of the complexity.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 On the Physical Basis of Self-Organization
来源期刊 现代物理(英文) 学科 医学
关键词 SELF-ORGANIZATION PHYSICAL PLASMA COMPLEX SYSTEMS
年,卷(期) 2013,(3) 所属期刊栏目
研究方向 页码范围 364-372
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SELF-ORGANIZATION
PHYSICAL
PLASMA
COMPLEX
SYSTEMS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代物理(英文)
月刊
2153-1196
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1826
总下载数(次)
0
论文1v1指导