基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, we study some robustness aspects of linear regression models of the presence of outliers or discordant observations considering the use of stable distributions for the response in place of the usual normality assumption. It is well known that, in general, there is no closed form for the probability density function of stable distributions. However, under a Bayesian approach, the use of a latent or auxiliary random variable gives some simplification to obtain any posterior distribution when related to stable distributions. To show the usefulness of the computational aspects, the methodology is applied to two examples: one is related to a standard linear regression model with an explanatory variable and the other is related to a simulated data set assuming a 23 factorial experiment. Posterior summaries of interest are obtained using MCMC (Markov Chain Monte Carlo) methods and the OpenBugs software.
推荐文章
Statistics matters in interpretations of non-traditional stable isotopic data
Isotopic data processing
Error propagation
Significant digits
Difference between means with uncertainties
Dynamics of soil organic carbon following land-use change: insights from stable C-isotope analysis i
C3 photosynthesis
C4 photosynthesis
Land-use change
Stable carbon isotopes
Black soil of Northeast China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Robust Linear Regression Models: Use of a Stable Distribution for the Response Data
来源期刊 统计学期刊(英文) 学科 数学
关键词 STABLE Distribution BAYESIAN Analysis LINEAR Regression MODELS MCMC Methods OpenBugs SOFTWARE
年,卷(期) 2013,(6) 所属期刊栏目
研究方向 页码范围 409-416
页数 8页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
STABLE
Distribution
BAYESIAN
Analysis
LINEAR
Regression
MODELS
MCMC
Methods
OpenBugs
SOFTWARE
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
论文1v1指导