作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前风电场发电功率预测时间较长、预测误差较大,易影响风力微电网根据用电负荷变化适时调度及有效电力资源配置的问题,提出了一种基于最小二乘支持向量机(least squares-support vector machine,LS-SVM)的微电网风电功率超短期预测方法.该方法根据风电场数据采集与监视控制(supervisory control and data acquisition,SCADA)系统获取原始功率数据样本,经归一化法预处理,运用网格搜索法确定模型参数,并依据LS-SVM法建立预测系统模型,利用MATLAB工具箱LS-SVM Lab进行仿真实验,跟踪及预测风电功率变化曲线,实现时间跨度小至5 min的超短期预测.实验验证结果表明,该方法比传统预测方法具有较高的精确度和较大的适用性,为风力微电网优化调度控制工程提供一种新思路.
推荐文章
混沌最小二乘支持向量机的短期风功率预测
混沌
LS-SVM
风功率预测
相空间重构
基于最小二乘支持向量机的短期负荷预测模型
最小二乘支持向量机
神经网络
短期负荷预测
时间序列预测
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
基于动态集成LSSVR的超短期风电功率预测
超短期风电功率预测
最小二乘支持向量回归
动态集成
动态时间弯曲距离
数值天气预报
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的风电功率超短期预测
来源期刊 电源学报 学科 工学
关键词 超短期预测 历史数据 最小二乘支持向量机 归一化预处理 网格搜索法
年,卷(期) 2013,(2) 所属期刊栏目
研究方向 页码范围 30-35
页数 6页 分类号 TM743
字数 4081字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 叶徐静 浙江大学电气工程学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (96)
共引文献  (688)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (12)
二级引证文献  (13)
1957(1)
  • 参考文献(0)
  • 二级参考文献(1)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(3)
  • 参考文献(0)
  • 二级参考文献(3)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(7)
  • 参考文献(0)
  • 二级参考文献(7)
1998(7)
  • 参考文献(0)
  • 二级参考文献(7)
1999(5)
  • 参考文献(0)
  • 二级参考文献(5)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(7)
  • 参考文献(1)
  • 二级参考文献(6)
2003(11)
  • 参考文献(0)
  • 二级参考文献(11)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(10)
  • 参考文献(1)
  • 二级参考文献(9)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(8)
  • 参考文献(3)
  • 二级参考文献(5)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(2)
  • 引证文献(2)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
超短期预测
历史数据
最小二乘支持向量机
归一化预处理
网格搜索法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电源学报
双月刊
2095-2805
12-1420/TM
大16开
天津市南开区黄河道467号大通大厦16层
2002
chi
出版文献量(篇)
1407
总下载数(次)
6
总被引数(次)
6404
论文1v1指导