基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The main drawback of current ECG systems is the location-specific nature of the systems due to the use of fixed/wired applications. That is why there is a critical need to improve the current ECG systems to achieve extended patient’s mobility and to cover security handling. With this in mind, Compressed Sensing (CS) procedure and the collaboration of Sensing Matrix Selection (SMS) approach are used to provide a robust ultra-low-power approach for normal and abnormal ECG signals. Our simulation results based on two proposed algorithms illustrate 25% decrease in sampling-rate and a good level of quality for the degree of incoherence between the random measurement and sparsity matrices. The simulation results also confirm that the Binary Toeplitz Matrix (BTM) provides the best compression performance with the highest energy efficiency for random sensing matrix.
推荐文章
Using Geomechanical Method to Predict Tectonic Fractures in Low-Permeability Sandstone Reservoirs
Low-permeability sandstone reservoir
Fracture parameters
Geomechanical method
Snowball Earth at low solar luminosity prevented by the ocean–atmosphere coupling
Faint Young Sun paradox
Carbon dioxide
Earth system
Siderite
Study on Late Cretaceous-Cenozoic exhumation of the Yanji area, NE China: insights from low-temperat
Low-temperature thermochronology
Exhumation
Pacific Plate subduction
Yanji area
Late Cretaceous-Cenozoic
Low carbon storage of woody debris in a karst forest in southwestern China
Secondary forest
Fine woody debris
Coarse woody debris
Dead wood
Karst
Subtropical China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Robust Low-Power Algorithm for Random Sensing Matrix for Wireless ECG Systems Based on Low Sampling-Rate Approach
来源期刊 信号与信息处理(英文) 学科 医学
关键词 SENSING Matrix Power Consumption Normal and ABNORMAL ECG Signal Compressed SENSING Block SPARSE BAYESIAN learning
年,卷(期) 2013,(3) 所属期刊栏目
研究方向 页码范围 125-131
页数 7页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SENSING
Matrix
Power
Consumption
Normal
and
ABNORMAL
ECG
Signal
Compressed
SENSING
Block
SPARSE
BAYESIAN
learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信号与信息处理(英文)
季刊
2159-4465
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
301
总下载数(次)
0
总被引数(次)
0
论文1v1指导