基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Conservation of marmots, large ground-dwelling squirrels restricted to the northern hemisphere, was impacted by direct human activity through hunting or modifying ecosystem dynamics. Regulating human activities reduced the threat of extinction. Climate change, an indirect human impact, threatens marmot survival through global warming and extreme weather events. Most marmot species occupy a harsh environment characterized by a short growing season and a long, cold season without food. Marmots cope with seasonality by hibernating. Their large size increases the efficiency of fat accumulation and its use as the sole energy source during hibernation. Marmot physiology is highly adapted to coping with low environmental temperatures;they are stressed by high heat loads. Global warming since the last ice age reduced the geographic distribution of some of the 15 species of marmots. Recent warming resulted in a movement upslope of their lower elevation boundary. This process likely will continue because warming is associated with drier unpalatable vegetation. Drought reduces reproduction and increases mortality;thus decreased summer rainfall in the montane environments where marmots live may cause local extinction. Snow cover, a major environmental factor, is essential to insulate hibernation burrows from low, stressful temperatures. However, prolonged vernal snow cover reduces reproduction and increases mortality. Montane areas currently lacking marmot populations because vernal snow cover persists beyond the time that marmots must begin foraging may become colonized if warming causes earlier snow melt. This benefit will be short-lived because decreased precipitation likely will result in unpalatable vegetation. Although some marmot populations are physiologically adapted to a warmer climate, global warming will increase too rapidly for any significant evolutionary response to dryness. The species that live in high, alpine meadows where tree and shrub invasions occur are most threatened with extinction. Captive breeding
推荐文章
The influence of climate and topography on chemical weathering of granitic regoliths in the monsoon
Granitic regolith
Chemical weathering
Supply-limited weathering
Kinetic-limited weathering
基于Change-Tree的本体变更日志存储研究
本体
本体变更
变更树
与或节点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Climate change and the conservation of marmots
来源期刊 自然科学期刊(英文) 学科 医学
关键词 Climate Change Global WARMING MARMOT SNOWMELT HIBERNATION Temperature
年,卷(期) 2013,(5) 所属期刊栏目
研究方向 页码范围 36-43
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Climate
Change
Global
WARMING
MARMOT
SNOWMELT
HIBERNATION
Temperature
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
自然科学期刊(英文)
月刊
2150-4091
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1054
总下载数(次)
0
总被引数(次)
0
论文1v1指导