基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高飞机发动机突发故障的诊断正确率,提出了将混合采样法和SVM相结合的突发故障诊断新方法.首先利用小波包多分辨率分析特性进行故障特征提取;然后采用混合采样法对提取的少数类突发故障样本特征进行优化重构,使少数类突发故障样本数量和其他类样本数量趋于平衡;再利用SVM构造多分类器对正常与多种故障状态进行分类.通过发动机转子试验台所采集的数据,对该故障诊断方法进行了验证研究.结果表明,该方法能有效识别发动机叶片断裂和吸入异物两类突发故障,且算法简单,故障分类识别效果好.
推荐文章
基于SAE的航空发动机气路故障诊断
航空发动机
气路故障
诊断
SAE
航空发动机故障诊断算法测试平台
航空发动机
故障诊断算法
测试平台
基于BPHP网络的航空发动机故障诊断
航空发动机
故障诊断
模糊数学
BPHP网络
基于RBF神经网络的航空发动机故障诊断研究
RBF网络
航空发动机
故障诊断
智能诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波包能量熵的航空发动机突发故障诊断
来源期刊 测控技术 学科 工学
关键词 航空发动机 突发故障 类不平衡 支持向量机 故障诊断
年,卷(期) 2013,(10) 所属期刊栏目 数据采集与处理
研究方向 页码范围 29-32
页数 4页 分类号 TH113.1|TN911.7
字数 2928字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王仲生 西北工业大学航空学院 63 460 12.0 17.0
2 张宏涛 西北工业大学航空学院 4 29 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (6)
参考文献  (6)
节点文献
引证文献  (3)
同被引文献  (15)
二级引证文献  (2)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
航空发动机
突发故障
类不平衡
支持向量机
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导