作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
机床加工状态对加工工件质量有很大的影响,因此识别机床加工状态有重要的意义.依据采集的机床加工数据,通过FFT频谱分析,划分出机床加工的3种状态.利用小波包分解,分别求出各种状态在不同频带节点上的能量分布百分比,并把它作为隐马尔科夫模型的输入特征向量.按照隐马尔科夫模型模式识别方法,建立3种标准状态的训练优化模型库,把测试样本代入优化模型库中,依据最大对数似然值对机床的加工状态进行了识别.计算结果表明,状态识别结果正确.
推荐文章
基于离散隐马尔科夫模型的语音识别技术
语音识别
隐马尔科夫模型
动态时间规整
人工神经网络
基于不同隐马尔科夫模型的图像识别方法
隐马尔科夫模型
E-HMM
图像识别
指纹识别
基于改进隐马尔科夫模型的鲁棒用户行为识别
隐马尔科夫模型
遗传算法
Baum-Welch算法
用户行为识别
基于时变状态转移隐半马尔科夫模型的寿命预测
时变状态转移概率
隐半马尔科夫模型
状态估计
寿命预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波包-隐马尔科夫模型的机床加工状态识别
来源期刊 机床与液压 学科 工学
关键词 小波包 隐马尔科夫模型 机床 状态识别
年,卷(期) 2013,(7) 所属期刊栏目
研究方向 页码范围 202-204
页数 分类号 TH133|TP391
字数 2707字 语种 中文
DOI 10.3969/j.issn.1001-3881.2013.07.057
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢锋云 华东交通大学机电工程学院 35 96 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (73)
参考文献  (8)
节点文献
引证文献  (5)
同被引文献  (22)
二级引证文献  (12)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(12)
  • 参考文献(1)
  • 二级参考文献(11)
2007(14)
  • 参考文献(1)
  • 二级参考文献(13)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(2)
  • 二级参考文献(3)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(3)
  • 引证文献(2)
  • 二级引证文献(1)
2017(2)
  • 引证文献(1)
  • 二级引证文献(1)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(6)
  • 引证文献(0)
  • 二级引证文献(6)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
小波包
隐马尔科夫模型
机床
状态识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机床与液压
半月刊
1001-3881
44-1259/TH
大16开
广州市黄埔区茅岗路828号
46-40
1973
chi
出版文献量(篇)
20801
总下载数(次)
44
总被引数(次)
104386
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导