基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
对结构化数据的分类方法大多是基于频繁子结构挖掘,然后通过排序剪枝等处理将频繁子结构与类关联得到结构规则进而分类.本文针对树形结构数据提出一种基于重要树模式的数据流分类方法TSC,首先使用相关度量发现k个与类相关的最具有判别能力的树模式,在该过程中,使用分支界限法提高搜索效率,无需挖掘完全模式,另一方面对参考度不断更新从而避免后剪枝操作,得到的树模式可直接用于分类.同时,和以往的方法相比,TSC是无启发式算法,只需用户设置最大规则集数目.然后,采用经典adwin思想处理演变树流中的局部概念漂移.实验表明,与以往的方法相比,TSC生成更少的有效规则集使得测试时间大大降低,总运行时间相对较短的同时可达到较高正确率,简单高效.
推荐文章
MIMO系统一种低复杂度的K-Best检测算法
MIMO译码器
信号检测
K-Best
低复杂度
基于改进决策树分类算法的遥感影像分类研究
决策树
分形
纹理特征
毯覆盖模型
遥感影像分类
基于K-近邻树的离群检测算法
离群检测
离群簇
最小生成树
不相似性
K-近邻
MIMO系统中k-best球形译码算法研究
多输入多输出
检测算法
球形译码
k-best球形译码算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于k-best树模式的树流分类算法研究
来源期刊 小型微型计算机系统 学科 工学
关键词 树流 分类 k-best树模式 相关度量
年,卷(期) 2013,(6) 所属期刊栏目 计算机软件与数据库技术
研究方向 页码范围 1328-1333
页数 6页 分类号 TP18
字数 6403字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王黎明 郑州大学信息工程学院 81 602 14.0 20.0
2 贾敏杰 郑州大学信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (6)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
树流
分类
k-best树模式
相关度量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导