基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
风电场功率预测对电力系统稳定运行起着决定性作用.首先对传统BP神经网络进行改进,以某一风电场获取的2月1日--10日的天气预报(NWP)数据和功率数据作为改进后BP神经网络的训练数据,对神经网络进行训练;其次以2月11号3小时的数值天气预报数据作为改进后BP神经网络的输入数据,对未来3小时的输出功率进行预测.预测过程和结果显示,改进后的BP神经网络在满足低预测误差的同时,能够提高BP神经网络的稳定性和收敛速度.
推荐文章
基于NWP和深度学习神经网络短期风功率预测
风功率预测
深度学习神经网络
数值天气预报
建立转换模型
概率密度
案例分析
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
基于Elman神经网络模型的短期光伏发电功率预测
光伏发电
功率预测
相似日
Elman神经网络
基于神经网络的电功率自适应测量方法
神经网络
电功率测量
LEA判别法
自适应
DSP
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于NWP和改进神经网络的短时风电功率预测研究
来源期刊 软件导刊 学科 工学
关键词 风电场功率预测 天气预报(NWP) BP神经网络 预测误差
年,卷(期) 2013,(4) 所属期刊栏目 软件理论与方法
研究方向 页码范围 31-33
页数 3页 分类号 TP301
字数 2892字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 邱道尹 94 815 14.0 26.0
2 宋慧娟 2 4 1.0 2.0
3 田芳 3 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (151)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(5)
  • 参考文献(0)
  • 二级参考文献(5)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(10)
  • 参考文献(0)
  • 二级参考文献(10)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风电场功率预测
天气预报(NWP)
BP神经网络
预测误差
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导