基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对变速器新产品故障检测问题,提出以阶次分析进行故障特征提取和支持向量机分类器进行故障分类的方法.通过建立二层支持向量机分类判别模型和对惩罚因子C的调整,解决了在训练样本集不平衡的情况下标准支持向量机分类器的分类面偏向样本数量较多类别的问题.通过对现场数据的实验结果表明,该方法的故障识别率和运行时间比BP神经网络和标准支持向量机算法均有较大提高.
推荐文章
不平衡样本集分类算法研究
支持向量机
分类
欠采样算法
不平衡样本
半监督学习在不平衡样本集分类中的应用研究
不平衡样本集
半监督协同分类方法
分类器差异性
分类模型
桥梁结构健康数据
面向不平衡数据分类的复合SVM算法研究
不平衡数据
支持向量机
自适应合成采样
不同错误代价
修正算法
不平衡数据的集成分类算法综述
不平衡数据
集成学习
分类
代价敏感
数据采样
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 面向不平衡样本集的变速器故障分类判别算法研究
来源期刊 小型微型计算机系统 学科 工学
关键词 变速器 故障诊断 阶次分析 支持向量机 不平衡数据集
年,卷(期) 2013,(7) 所属期刊栏目 图形、图像及其它
研究方向 页码范围 1708-1712
页数 5页 分类号 TP391
字数 5334字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 史海波 中国科学院沈阳自动化研究所 61 587 13.0 19.0
2 尚文利 中国科学院沈阳自动化研究所 58 618 12.0 23.0
3 周晓锋 中国科学院沈阳自动化研究所 19 174 7.0 13.0
4 高明山 东风朝阳柴油机有限责任公司信息中心 6 25 2.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (6)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(1)
  • 二级参考文献(1)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
变速器
故障诊断
阶次分析
支持向量机
不平衡数据集
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导