基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
朴素贝叶斯分类器(NB)由于结构简单,计算高效而被广泛应用,但它不能充分利用属性间的依赖关系,有一定的局限性.因此,隐朴素贝叶斯分类器(HNB)通过为每个属性引入一个隐藏父节点,将各个属性之间的依赖关系都综合其中,使属性间的依赖关系得到了利用.但隐朴素贝叶斯分类器忽略了属性对与该属性的依赖关系,故在此基础上提出一种改进算法--双隐朴素贝叶斯算法(DHNB),使属性对与该属性的依赖关系得到了充分的利用,并提出一种新型的阈值定义法,使得选取的阈值让分类精度与时间复杂度的比值为最大,缓解了算法时间复杂度和分类精度之间的矛盾.然后将改进的算法在UCI数据集上进行仿真试验,结果表明其分类性能优于HNB和NB,该方法具有较好的适用性.
推荐文章
一种新型加权朴素贝叶斯分类算法
数据挖掘
朴素贝叶斯
属性频率
一种改进的朴素贝叶斯文本分类算法
贝叶斯
文本分类
特征词
多变量贝努力模型
基于改进特征加权的朴素贝叶斯分类算法
文本分类
朴素贝叶斯
JS散度
词频
文本频率
类别频率
一种改进的贝叶斯算法在垃圾邮件过滤中的研究
文本分类
垃圾邮件
朴素贝叶斯
支持向量机
EM
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进隐朴素贝叶斯算法的研究
来源期刊 小型微型计算机系统 学科 工学
关键词 朴素贝叶斯(NB) 隐朴素贝叶斯(HNB) 双隐朴素贝叶斯(DHNB) 阈值 分类精度
年,卷(期) 2013,(7) 所属期刊栏目 信息安全与算法研究
研究方向 页码范围 1654-1658
页数 5页 分类号 TP18
字数 4807字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张小刚 湖南大学电气与信息工程学院 42 577 15.0 22.0
2 陈华 湖南大学信息科学与工程学院 28 442 13.0 20.0
3 胡义函 湖南大学电气与信息工程学院 3 49 2.0 3.0
4 李晶辉 湖南大学电气与信息工程学院 2 49 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (10)
参考文献  (9)
节点文献
引证文献  (17)
同被引文献  (35)
二级引证文献  (31)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(3)
  • 参考文献(3)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(3)
  • 引证文献(3)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(6)
  • 引证文献(5)
  • 二级引证文献(1)
2017(5)
  • 引证文献(2)
  • 二级引证文献(3)
2018(12)
  • 引证文献(3)
  • 二级引证文献(9)
2019(13)
  • 引证文献(2)
  • 二级引证文献(11)
2020(8)
  • 引证文献(1)
  • 二级引证文献(7)
研究主题发展历程
节点文献
朴素贝叶斯(NB)
隐朴素贝叶斯(HNB)
双隐朴素贝叶斯(DHNB)
阈值
分类精度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导