基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了能够客观地对长江水质进行评价,在分析人工神经网络原理的基础上,通过对水质污染指标浓度生成样本的方法,生成了适用于人工神经网络模型训练的样本,并应用基于误差反向传播原理的前向多层神经网络,建立了用于长江水质评价的人工神经网络模型.将该模型用于长江水环境评价,通过模型的计算,得到长江水质类别.评价结果表明该模型设计合理、泛化能力强,对长江水质评价具有较好的客观性、通用性和实用性.
推荐文章
海水水质评价的人工神经网络模型研究
人工 神经网络
海水水质
评价
训练样本
检验样本
连接权值
基于模糊人工神经网络识别的水质评价模型
模糊识别
神经网络
水质评价
基于BP神经网络模型的水质评价方法探讨
BP神经网络模型
水资源
水质评价
基于AGA-RBF神经网络的电厂水质评价
水质评价
径向基函数神经网络
加速遗传算法(AGA)
主成分分析(PCA)方法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于人工神经网络的长江水质评价模型
来源期刊 信息技术 学科 工学
关键词 人工神经网络 水质 评价 长江
年,卷(期) 2013,(8) 所属期刊栏目 基金项目
研究方向 页码范围 54-56,60
页数 4页 分类号 TP309
字数 3914字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 郭庆春 45 264 10.0 14.0
4 李力 中国科学院地球环境研究所 45 407 11.0 19.0
5 何振芳 24 170 8.0 11.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (95)
参考文献  (8)
节点文献
引证文献  (8)
同被引文献  (35)
二级引证文献  (14)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(6)
  • 参考文献(6)
  • 二级参考文献(0)
2013(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(2)
  • 二级引证文献(1)
2018(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(8)
  • 引证文献(2)
  • 二级引证文献(6)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
人工神经网络
水质
评价
长江
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术
月刊
1009-2552
23-1557/TN
大16开
哈尔滨市南岗区黄河路122号
14-36
1977
chi
出版文献量(篇)
11355
总下载数(次)
31
论文1v1指导