基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
A major challenge of any optimization problem is to find the global optimum solution. In a multi-dimensional solution space which is highly non-linear, often the optimization algorithm gets trapped around some local optima. Optimal Identification of unknown groundwater pollution sources poses similar challenges. Optimization based methodology is often applied to identify the unknown source characteristics such as location and flux release history over time, in a polluted aquifer. Optimization based models for identification of these characteristics of unknown ground-water pollution sources rely on comparing the simulated effects of candidate solutions to the observed effects in terms of pollutant concentration at specified sparse spatiotemporal locations. The optimization model minimizes the difference between the observed pollutant concentration measurements and simulated pollutant concentration measurements. This essentially constitutes the objective function of the optimization model. However, the mathematical formulation of the objective function can significantly affect the accuracy of the results by altering the response contour of the solution space. In this study, two separate mathematical formulations of the objective function are compared for accuracy, by incorporating different scenarios of unknown groundwater pollution source identification problem. Simulated Annealing (SA) is used as the solution algorithm for the optimization model. Different mathematical formulations of the objective function for minimizing the difference between the observed and simulated pollutant concentration measurements show different levels of accuracy in source identification results. These evaluation results demonstrate the impact of objective function formulation on the optimal identification, and provide a basis for choosing an appropriate mathematical formulation for unknown pollution source identification in contaminated aquifers.
推荐文章
Effects of a proline solution cover on the geochemical and mineralogical characteristics of high-sul
Proline
Coal gangue
Pollution control
Heavy metal fraction
Mineralogical characteristics
改进Closed_Form Solution方法进行前景物体运动模糊抠图
Closed_Form Solution抠图
运动模糊
梯度统计特征
透明度
基于Solution Engine DMAC的多通道数据传输机制及应用
DMAC
优先级
双向地址模式
总线模式
AVS-M
改进的Closed-Form Solution景物提取算法
自然景物提取
抠像技术
拉普拉斯Q
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Encapsulating the Role of Solution Response Space Roughness on Global Optimal Solution: Application in Identification of Unknown Groundwater Pollution Sources
来源期刊 最优化(英文) 学科 医学
关键词 Optimization Optimal SOLUTION SPACE Inverse Problems Simulated Annealing Groundwater POLLUTION Objective Function Formulation POLLUTION Source IDENTIFICATION SOLUTION SPACE ROUGHNESS
年,卷(期) 2014,(3) 所属期刊栏目
研究方向 页码范围 26-41
页数 16页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Optimization
Optimal
SOLUTION
SPACE
Inverse
Problems
Simulated
Annealing
Groundwater
POLLUTION
Objective
Function
Formulation
POLLUTION
Source
IDENTIFICATION
SOLUTION
SPACE
ROUGHNESS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
最优化(英文)
季刊
2325-7105
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
65
总下载数(次)
0
总被引数(次)
0
期刊文献
论文1v1指导