In this study, we major discuss a multiple composite piezoelectric motor. It is made by the base, the multiple composite piezoelectric stator and the preload adjusting module. The multiple composite piezoelectric stator is composed of the base, the first actuating element, the second actuating element and stator. The first actuating element is composed of the longitudinal and the first bending vibration modules, in which the first bending vibration module includes the horizontal and vertical bending vibration modules. And the second actuating element or bending vibration modules, wherein the second actuating element also includes the horizontal and vertical bending vibration modules. In addition, the preload adjusting module includes the limiting element, spring, washer and nut. In order to obtain the best vibration modes of the multiple composite piezoelectric motor, we use the ANSYS code to simulate. And so as to get the better performance and efficiency relate to the previous similar type’s motor under the same driving conditions, we try to use different vibration modules or modes to drive the multiple composite piezoelectric motor, including the longitudinal, the first bending, the second bending and the multiple vibration modules or modes by experiments. According to the results of the simulations and experiments, we found that the multiple composite piezoelectric motor has better rotational speed, loading ability and conversion efficiency of direction relate to the previous similar type’s motor. Where the maximum rotational speed multiple composite piezoelectric motor is up to 600 rpm under conditions of 180 Vp-p driving voltage, 37.8 kHz driving frequency, 00 driving phase angle and 12.1 gw loading. And the maximum loading ability is 2500 gw under conditions of 180 Vp-p driving voltage, 37.8 kHz driving frequency, 00 driving phase angle and 6rpm rotational speed.