基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The public content increasingly available on the Internet, especially in online forums, enables researchers to study society in new ways. However, qualitative analysis of online forums is very time consuming and most content is not related to researchers’ interest. Consequently, analysts face the following problem: how to efficiently explore and select the content to be analyzed? This article introduces a new process to support analysts in solving this problem. This process is based on unsupervised machine learning techniques like hierarchical clustering and term co-occurrence network. A tool that helps to apply the proposed process was created to provide consolidated and structured results. This includes measurements and a content exploration interface.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Process to Support Analysts in Exploring and Selecting Content from Online Forums
来源期刊 社交网络(英文) 学科 医学
关键词 Qualitative Analysis of ONLINE Forums EXPLORE and SELECT the ONLINE Forums CONTENT Machine Learning Hierarchical Clustering Terms CO-OCCURRENCE Network Consolidated and Structured Results
年,卷(期) 2014,(2) 所属期刊栏目
研究方向 页码范围 86-93
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Qualitative
Analysis
of
ONLINE
Forums
EXPLORE
and
SELECT
the
ONLINE
Forums
CONTENT
Machine
Learning
Hierarchical
Clustering
Terms
CO-OCCURRENCE
Network
Consolidated
and
Structured
Results
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
社交网络(英文)
季刊
2169-3285
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
112
总下载数(次)
0
总被引数(次)
0
论文1v1指导