基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Computational biology plays a significant role in the discovery of new biomarkers, the analyses of disease states and the validation of potential biomarkers. Biomarkers are used to measure the progress of disease or the physiological effects of therapeutic intervention in the treatment of disease. They are also used as early warning signs for various diseases such as cancer and inflammatory diseases. In this review, we outline recent progresses of computational biology application in research on biomarkers discovery. A brief discussion of some necessary preliminaries on machine learning techniques (e.g., clustering and support vector machines—SVM) which are commonly used in many applications to biomarkers discovery is given and followed by a description of biological background on biomarkers. We further examine the integration of computational biology approaches and biomarkers. Finally, we conclude with a discussion of key challenges for computational biology to biomarkers discovery.
推荐文章
Jurassic granitoid dike in Luodian, Guizhou Province: discovery and geological significance
Jurassic granitoid dike
Geochemical characteristics
Geochronology
Luodian
Guizhou province
Application of K-means and PCA approaches to estimation of gold grade in Khooni district (central Ir
K-means method
Clustering
Principal
component analysis (PCA)
Estimation
Gold
Khooni district
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Computational Approaches for Biomarker Discovery
来源期刊 智能学习系统与应用(英文) 学科 医学
关键词 COMPUTATIONAL BIOLOGY BIOMARKER DISCOVERY MACHINE Learning
年,卷(期) 2014,(4) 所属期刊栏目
研究方向 页码范围 153-161
页数 9页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2014(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
COMPUTATIONAL
BIOLOGY
BIOMARKER
DISCOVERY
MACHINE
Learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能学习系统与应用(英文)
季刊
2150-8402
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
166
总下载数(次)
0
总被引数(次)
0
论文1v1指导