基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对超声TOFD存在近表面盲区及近表面缺陷自动识别分类的问题,提出了基于超声TOFD直通波及神经网络对近表面孔状缺陷识别分类的方法。在近表面缺陷检测信号的直通波部分选取多个关键点,揭示了各关键点幅度分布与近表面缺陷深度的关系,获得了用于近表面缺陷检测的幅度分布特征值,并将该特征值用于BP神经网络对缺陷识别分类。试验结果表明,该方法能够对铝合金板近表面孔状缺陷进行准确、有效的自动识别分类。
推荐文章
基于神经网络的在线调制自动识别
信号特征
调制识别
神经网络分类器
基于卷积神经网络的管道表面缺陷识别研究
缺陷识别
管道表面缺陷
机器视觉
卷积神经网络
缺陷分类
GoogleNet构造优化
基于新型深度神经网络的民机表面缺陷识别
民航飞机
表面缺陷识别
残差
Inception-net
深度神经网络
基于BP神经网络仪器显示自动识别方法
仪器显示
倾斜度调整
图像去噪
特征提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于超声TOFD直通波及神经网络的近表面缺陷自动识别
来源期刊 无损检测 学科 工学
关键词 超声TOFD BP神经网络 近表面缺陷 特征值
年,卷(期) 2014,(3) 所属期刊栏目 科研成果与学术交流
研究方向 页码范围 14-17,24
页数 5页 分类号 TG115.28
字数 2922字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卢超 南昌航空大学无损检测教育部重点试验室 110 753 16.0 21.0
2 陈振华 南昌航空大学无损检测教育部重点试验室 24 108 6.0 8.0
3 胡怀辉 南昌航空大学无损检测教育部重点试验室 2 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (32)
参考文献  (9)
节点文献
引证文献  (7)
同被引文献  (21)
二级引证文献  (5)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(2)
  • 引证文献(1)
  • 二级引证文献(1)
2017(4)
  • 引证文献(3)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
超声TOFD
BP神经网络
近表面缺陷
特征值
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无损检测
月刊
1000-6656
31-1335/TG
大16开
上海市邯郸路99号
4-237
1978
chi
出版文献量(篇)
4436
总下载数(次)
11
总被引数(次)
33350
论文1v1指导